Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II.
نویسندگان
چکیده
Biochemical experiments indicate that transcriptional elongation by RNA polymerase II (Pol II) is inhibited by nucleosomes and hence requires chromatin-modifying activities. Here, we examine the fate of histones upon passage of elongating Pol II in vivo. Histone density throughout the entire Saccharomyces cerevisiae GAL10 coding region is inversely correlated with Pol II association and transcriptional activity, suggesting that the elongating Pol II machinery efficiently evicts core histones from the DNA. Furthermore, new histones appear to be deposited onto DNA less than 1 min after passage of Pol II. Transcription-dependent deposition of histones requires the FACT complex that travels with elongating Pol II. Our results suggest that Pol II transcription generates a highly dynamic equilibrium of histone eviction and histone deposition and that there is significant histone exchange throughout most of the yeast genome within a single cell cycle.
منابع مشابه
Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II.
Histones are rapidly evicted and deposited during transcription by RNA polymerase (Pol) II, but a factor that mediates histone eviction in vivo has not yet been identified. Here, we show that the histone chaperone Asf1 associates with promoters and coding regions of transcriptionally active genes. Asf1 mediates histone H3, but not H2B, eviction and deposition during Pol II elongation, suggestin...
متن کاملDomain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density.
We show that histone-DNA interactions are disrupted across entire yeast heat shock genes upon their transcriptional activation. At HSP82, nucleosomal disassembly spans a domain of approximately 3 kb, beginning upstream of the promoter and extending through the transcribed region. A kinetic analysis reveals that histone H4 loses contact with DNA within 45 s of thermal upshift. Nucleosomal reasse...
متن کاملThe Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo.
The Swi/Snf nucleosome-remodeling complex is recruited by DNA-binding activator proteins, whereupon it alters chromatin structure to increase preinitiation complex formation and transcription. At the SUC2 promoter, the Swi/Snf complex is required for histone eviction in a manner that is independent of transcriptional activity. Swi/Snf travels through coding regions with elongating RNA polymeras...
متن کاملNuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5.
NuA4, the major H4 lysine acetyltransferase (KAT) complex in Saccharomyces cerevisiae, is recruited to promoters and stimulates transcription initiation. NuA4 subunits contain domains that bind methylated histones, suggesting that histone methylation should target NuA4 to coding sequences during transcription elongation. We show that NuA4 is cotranscriptionally recruited, dependent on its physi...
متن کاملNucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14.
Histone posttranslational modifications and chromatin dynamics are inextricably linked to eukaryotic gene expression. Among the many modifications that have been characterized, histone tail acetylation is most strongly correlated with transcriptional activation. In Metazoa, promoters of transcriptionally active genes are generally devoid of physically repressive nucleosomes, consistent with the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 24 23 شماره
صفحات -
تاریخ انتشار 2004